Qiuyun Zou

qiuyun.zou@bupt.edu.cn


  • Home

  • Categories

  • Archives

  • Tags

  • About

  • Search

贝叶斯估计理论

Posted on 2019-09-22 | In Signal Processing

系统模型

给定系统模型
\begin{align}
\boldsymbol{y}=g(\boldsymbol{x})
\end{align}
其中$\boldsymbol{x}\in \mathbb{R}^M$是目标信号,其随机性由先验概率$p(\boldsymbol{x})$刻画;$\boldsymbol{y}\in \mathbb{R}^N$是观测信号;函数$g(\cdot)$表示从$N$维空间到$M$维空间的映射,即$g(\cdot):\mathbb{R}^N\rightarrow \mathbb{R}^M$。在信号重构理论的研究对象中,映射$g(\cdot)$以及先验概率$p(\boldsymbol{x})$均给定,我们需要从观测信号$\boldsymbol{y}$中恢复出目标信号$\boldsymbol{x}$来。映射函数$g(\cdot)$可以是线性的,如线性高斯模型$g(\boldsymbol{x})=\boldsymbol{Hx}+\boldsymbol{w}$,也可以是非线性函数,如ADC量化模型$g(\boldsymbol{x})=Q(\boldsymbol{Hx}+\boldsymbol{w})$,其中$Q(\cdot)$表示均匀量化函数。

Read more »

压缩感知综述

Posted on 2019-04-11 | In Signal Processing

压缩感知综述.pdf

Read more »

The MMSE of an Equivalent Scalar Channel with a Mixtrue Gaussian Prior

Posted on 2019-01-25 | In Signal Processing

Mixtrue Gaussian

We consider mixtrue Gaussian distribution
\begin{align}
p(h)=\sum_{k=1}^K \rho_k \mathcal{N}_c(h|0,\sigma_k^2)
\end{align}
Followings are two conditions of mixture Gaussian distribution

Read more »

A Variational Inference Perspective on Expectation Propagation

Posted on 2019-01-04 | In Signal Processing

Notations:

  1. $\text{Diag}(\boldsymbol{a})$: a diagonal matrix with $\boldsymbol{a}$ being its diagonal element.
  2. $\text{diag}(\mathbf{A})$: a vector from the diagonal element of $\mathbf{A}$.
  3. $\boldsymbol{a}\odot \boldsymbol{b}$: componentwise multiply.
  4. $\boldsymbol{a}\oslash \boldsymbol{b}$: componentwise divide.
Read more »

Variational Inference for Bayesian Linear Regression

Posted on 2019-01-03 | In PRML

Notations:

  • KL-divergence: Given two distribution $p(x)$ and $q(x)$, the Kullback–Leibler divergence, also written as KL-divergence, is used to value the difference between $p(x)$ and $q(x)$ denoted as
    \begin{align}
    \mathcal{D}_{\text{KL} } (q(x)||p(x))=\int q(x)\log \frac{q(x)}{p(x)}\text{d}x
    \end{align}
    The KL-divergence is also named relative entropy in information theory.
Read more »

Expectation Maximization

Posted on 2019-01-03 | In Signal Processing

Notations: We use $\mathbf{x}$ to denote vector. $\mathbf{X}$ is matrix. $(\cdot)^T$ represents transposition. $\mathcal{N}(\mathbf{x}|\mathbf{a},\mathbf{A})$ denotes a Gaussian distribution with mean $\mathbf{a}$, variance $\mathbf{A}$ and argument $\mathbf{x}$. $\mathbb{E}\left\{\cdot\right\}$ refers to expectation operation.

Read more »

2018年总结与2019年规划

Posted on 2018-12-31 | In 随笔

2018年总结

[1] 发表了一篇信号处理领域次顶级期刊论文,IEEE Signal Processing Letters,题目为“Concise Derivation of Approximate Message Passing Using Expectation Propagation”。
[2] 完成了北邮“申请-审核”制博士申请。
[3] 参加了一次半程马拉松,全场21.09km,成绩为1:59:47。
[4] 通过全国大学生六级考试,分数为468(425分即为合格)。
[5] 搭建了个人博客网站,用于分享一些笔记以及专业知识,目前已发表博文21篇。
[6] 初涉深度学习领域,打算做一些跨学科的研究。

Read more »

Mutual Information and MMSE

Posted on 2018-12-24 | In Communication

Notations:

  • Mutual information (MI)
    \begin{align}
    I(X;Y)
    &=\int p(x,y)\log \frac{p(x|y)}{p(x)}\text{d}x\text{d}y\\
    &=\int p(x,y)\log \frac{p(x,y)}{p(x)p(y)}\text{d}x\text{d}y\\
    &=\int p(x,y)\log \frac{p(y|x)}{p(y)}\text{d}x\text{d}y\\
    &=I(Y;X)
    \end{align}
Read more »

Derivation of Sparse Bayesian Learning

Posted on 2018-12-11 | In Signal Processing

System Model

We consider following system
\begin{align}
\mathbf{y}=\mathbf{Hx}+\mathbf{w}
\end{align}
where $\mathbf{y}\in \mathbb{R}^M$ is observed signal or received signal, $\mathbf{H}\in \mathbb{R}^{M\times N}$ linear transform matix, and $\mathbf{x}\in \mathbb{R}^{N}$ is estimated signal. In addition, $\mathbf{w}\sim \mathcal{N}(\mathbf{w}|\mathbf{0},\sigma^2\mathbf{I})$ is additional Gaussian noise.

Read more »

误差反向传播

Posted on 2018-12-05 | In PRML

引言

前馈神经网络参数的更新,其难点在于计算误差函数的梯度。为此,我们的目标是寻找一种计算前馈神经网络的误差函数$E(\boldsymbol{w})$的梯度的一种高效方法。我们会看到,可以使用局部信息传递的思想完成这一点。在局部信息传递的思想中,信息在神经网络中交替地向前、向后传播。这种方法被称为误差反向传播(back propagation,BP)。

Read more »
123
Qiuyun

Qiuyun

take it easy

29 posts
8 categories
9 tags
RSS
CSDN Mathematics
© 2020 Qiuyun.Zou
本站总访客数 人次 | 本站总访问量 次